All content on this site is intended for healthcare professionals only. By acknowledging this message and accessing the information on this website you are confirming that you are a Healthcare Professional. If you are a patient or carer, please visit the MPN Advocates Network.
The MPN Hub website uses a third-party service provided by Google that dynamically translates web content. Translations are machine generated, so may not be an exact or complete translation, and the MPN Hub cannot guarantee the accuracy of translated content. The MPN Hub and its employees will not be liable for any direct, indirect, or consequential damages (even if foreseeable) resulting from use of the Google Translate feature. For further support with Google Translate, visit Google Translate Help.
Bookmark this article
Polycythemia vera (PV) is a hematopoietic stem cell neoplasm, most often caused by a cytogenetic abnormality in the Janus kinase 2 (JAK2) gene.1 PV is characterized by an increased production of red blood cells, platelets, and neutrophils, resulting in disease-specific symptoms and an increased risk of vascular events and progression to myelofibrosis or acute myeloid leukemia.1 Current conventional treatments focus on the normalization of blood counts in order to control symptoms; however, several prospective clinical trials have demonstrated the potential of some therapies to achieve both blood count stabilization and a decrease in JAK2 mutant allele burden.1
Recently, Moliterno et al.1 published a review in Blood investigating the role of JAK2V617F allele burden in PV clinical outcomes as well as highlighting the prospective clinical trials where JAK2V617F burden is measured. We summarize the key points in the article below.
Figure 1. Quantitative, qualitative, and clonal burden of JAK2V617F*
HIF, hypoxia inducible factor; ROS, reactive oxygen species; VAF, variant allele frequency.
*Adapted from Moliterno, et al.1
The knowledge of the JAK2V617F mutation in relation to PV has allowed both physicians and patients to understand that risk is not inherently based on blood counts alone but also due to the effects of JAK2V617F VAF on thrombosis and disease progression. Prospective trials are now highlighting the benefits of VAF reduction on clinical outcomes as well as certain treatment options that have a greater effect on reducing the allelic burden. However, there is still uncertainty around the degree of VAF to consistently reduce thrombotic risk, how closely peripheral VAF suppression reflects clonal suppression of JAK2-mutated cells, when to initiate therapy, and the durability of suppression after achieving reductions. These questions provide an exciting way forward to further explore superior disease-modifying therapies and better long- term clinical outcomes.
Subscribe to get the best content related to MPN delivered to your inbox